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Abstract. The absence of up-to-date emissions has been a major impediment to accurately 

simulate aspects of atmospheric chemistry, and to precisely quantify the impact of changes of 

emissions on air pollution. Hence, a non-linear joint analytical inversion (Gauss-Newton method) 

of both volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions is made by 

exploiting the Smithsonian Astrophysical Observatory (SAO) Ozone Mapping and Profile Suite 25 

Nadir Mapper (OMPS-NM) formaldehyde (HCHO) and the National Aeronautics and Space 

Administration (NASA) Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide 

(NO2) retrievals during the Korea-United States Air Quality (KORUS-AQ) campaign over East 

Asia in May-June 2016. Effects of the chemical feedback of NOx and VOCs on both NO2 and 

HCHO are implicitly included through iteratively optimizing the inversion. Emissions estimates 30 

are greatly improved (averaging kernels>0.8) over medium- to high-emitting areas such as cities 

and dense vegetation. The amount of total NOx emissions is mainly dictated by values reported in 

the MIX-Asia 2010 inventory. After the inversion we conclude a decline in the emissions (before, 

after, change) for China (87.94±44.09 Gg/day, 68.00±15.94 Gg/day, -23%), North China Plain 

(NCP) (27.96±13.49 Gg/day, 19.05±2.50 Gg/day, -32%), Pearl River Delta (PRD) (4.23±1.78 35 

Gg/day, 2.70±0.32 Gg/day, -36%), Yangtze River Delta (YRD) (9.84±4.68 Gg/day, 5.77±0.51 
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Gg/day, -41%), Taiwan (1.26±0.57 Gg/day, 0.97±0.33 Gg/day, -23%), and Malaysia (2.89±2.77 

Gg/day, 2.25±1.34 Gg/day, -22%), all of which have effectively implemented various stringent 

regulations. In contrast, South Korea (2.71±1.34 Gg/day, 2.95±0.58 Gg/day, +9%) and Japan 

(3.53±1.71 Gg/day, 3.96±1.04 Gg/day, +12%) experience an increase in NOx emissions potentially 40 

due to risen number of diesel vehicles and new thermal power plants. We revisit the well-

documented positive bias of the model in terms of biogenic VOC emissions in the tropics. The 

inversion, however, suggests a larger growth of VOC (mainly anthropogenic) over NCP (25%) 

than previously reported (6%) relative to 2010. The spatial variation in both magnitude and sign 

of NOx and VOC emissions results in non-linear responses of ozone production/loss. Due to 45 

simultaneous decrease/increase of NOx/VOC over NCP and YRD, we observe an ~53% reduction 

in the ratio of the chemical loss of NOx (LNOx) to the chemical loss of ROx (RO2+HO2) 

transitioning toward NOx-sensitive regimes, which in turn, reduces/increases the afternoon 

chemical loss/production of ozone through NO2+OH (-0.42 ppbv hr-1)/HO2 (and RO2)+NO (+0.31 

ppbv hr-1). Conversely, a combined decrease in NOx and VOC emissions in Taiwan, Malaysia, and 50 

the southern China suppresses the formation of ozone. Ultimately, model simulations indicate 

enhancements of maximum daily 8-hour average (MDA8) surface ozone over China (0.62 ppbv), 

NCP (4.56 ppbv), and YRD (5.25 ppbv) due to the non-linear ozone chemistry, suggesting that 

emissions standards should be extended to regulate VOCs to be able to curb ozone production 

rates. Taiwan, Malaysia, and PRD stand out as the regions undergoing lower MDA8 ozone levels 55 

resulting from the NOx reductions occurring predominantly in NOx-sensitive regimes. 
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Introduction 

The study of ozone (O3) formation within the troposphere in East Asia is of global 

importance. This significant pollutant is not confined to the source, as it spreads hemispherically 60 

through the air, affecting background concentrations as far away as U.S. A study by Lin et al. 

[2017] provided modeling evidence of enhancements of springtime surface ozone levels (+0.5 

ppbv yr-1) in the western U.S. in 1980-2014 solely due to the tripling of Asian anthropogenic 

emissions over the period. As more studies have informed the impact of ozone pollution on both 

human health and crop yields, Chinese governmental regulatory agencies have begun to take action 65 

on cutting the amount of NOx (NO+NO2) emissions since 2011-2012 [Gu et al., 2013; Reuter et 

al., 2014; Krotkov et al., 2016; de Foy et al., 2016; Souri et al., 2017]; however no effective policy 

on volatile organic compound (VOC) emissions, emitted from various sources such as solvent use, 

mobile, and chemical industries [Liu et al., 2008a,b], had been put into the effect prior to 2016 

[Stavrakou et al., 2017; Souri et al., 2017; Shen et al., 2019; Li et al., 2019], with an exception to 70 

Pearl River Delta (PRD) [Zhong et al. 2013]. In addition to China, a number of governments 

including those of Malaysia and Taiwan have put a great deal of effort into shifting their energy 

pattern from consuming fossil fuels to renewable sources [Trappey el al., 2012; Chua and Oh, 

2011]. On the other hand, using satellite observations, Irie et al. [2016] and Souri et al. [2017] 

revealed a systematic hiatus in the reduction of NOx over South Korea and Japan potentially due 75 

to increases in the number of diesel vehicles and new thermal power plants built to compensate for 

the collapse of the Fukushima nuclear power plant in 2011. Therefore, it is interesting to quantify 

to what extent these policies have impacted ozone pollution. 

Unraveling the origin of ozone is complicated by a number of factors encompassing the 

nonlinearity of ozone formation to its sources, primarily from NOx and VOCs. Therefore, to be 80 

able to quantify the impact of recent emission changes, we have developed a top-down estimate of 

emission inventories using well-characterized observations. There are a myriad of studies focusing 

on optimizing the bottom-up anthropogenic and biogenic emissions using satellites observations, 

which provide high spatial coverage, in conjunction with chemical transport models for VOCs 

[e.g., Palmer et al., 2003; Shim et al., 2005; Curci et al., 2010; Stavrakou et al., 2009, 2011], and 85 

NOx [Martin et al., 2003; Chai et al., 2009; Miyazaki et al., 2017; Souri et al., 2016a, 2017, 2018]. 

Most inverse modeling studies do not consider both NO2 and formaldehyde (HCHO) satellite-

based observations to perform a joint-inversion. It has been shown that VOC and NOx emissions 
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can affect the production/loss of each other [Marais et al., 2012; Wolfe et al. 2016; Valin et al., 

2016; Souri et al., 2020]. Consequently, a joint method that incorporates both species while 90 

minimizing the uncertainties in their emissions is better suited to address this problem. Dealing 

with this tangled relationship between VOC-NO2 and NOx-HCHO requires an iteratively non-

linear inversion framework able to incrementally consider the relationships derived from a 

chemical transport model. Here we will provide an optimal estimate of NOx and VOC emissions 

during the KORUS-AQ campaign using the Smithsonian Astrophysical Observatory (SAO) Ozone 95 

Mapping and Profile Suite Nadir Mapper (OMPS-NM) HCHO and the National Aeronautics and 

Space Administration (NASA) Ozone Monitoring Instrument (OMI) NO2 retrievals whose 

accuracy and precisions are characterized against rich observations collected during the campaign. 

Having a top-down constraint on both emissions permits a more precise quantification of the 

impact of the recent emission changes on different chemical pathways pertaining to ozone 100 

formation and loss. 

Measurements, Modeling and Method 

Remote sensing measurements 

OMPS HCHO 

OMPS-NM onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) is a UV-105 

backscattered radiation spectrometer launched in October 2011 [Flynn et al., 2014]. Its revisit time 

is the same as other NASA A-Train satellites, including Aura at approximately 13:30 local time at 

the equator in ascending mode. OMPS-NM covers 300-380 nm with a resolution of 1 nm full-

width half maximum (FWHM). The sensor has a 340×740 pixel charge-coupled device (CCD) 

array measuring the UV spectra at a spatial resolution of 50×50 km2 at nadir. The HCHO retrieval 110 

has been fully described in González Abad et al. [2015; 2016]. Briefly, OMPS HCHO slant 

columns are fit using direct radiance fitting [Chance, 1998] in the spectral range 327.7-356.5 nm. 

The spectral fit requires a reference spectrum as function of the cross-track position as it attempts 

to determine the number of molecules with respect to a reference (i.e., a differential spectrum 

fitting). To account for this, we use earthshine radiances over a relatively clear area in the remote 115 

Pacific Ocean within -30o to +30o latitudes. An upgrade to this reference correction is the use of 

daily HCHO profiles over the mean climatological ones from simulations done by the GEOS-

Chem chemical transport model. The scattering weights describing the sensitivity of the light path 

through a simulated atmosphere are calculated using VLIDORT. The shape factors used for 
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calculating air mass factors (AMFs) are derived from a regional chemical transport model 120 

(discussed later) that is used for carrying out the inversion in the present study. We remove 

unqualified pixels based on cloud fraction < 40%, solar zenith angle < 65o, and a main quality flag 

provided in the data. We oversample the HCHO columns for the period of May-June 2016 using 

a Cressman spatial interpolator with a 1o radius of influence. 

OMI Tropospheric NO2 125 

We use NASA OMI tropospheric NO2 (version 3.1) level 2 data whose retrieval is made 

in the violet/blue (402-465 nm) due to strong absorption of the molecule in this wavelength range 

[Levelt et al., 2018]. The sensor has a nadir spatial resolution of 13´24 km2 which can extend to 

40´160 km2 at the edge of scanlines. A more comprehensive description of the retrieval and the 

uncertainty associated with the data can be found in Krotkov et al. [2017] and Choi et al. [2019]. 130 

We remove bad pixels based on cloud fraction < 20%, solar zenith angle < 65o, without the row 

anomaly, vertical column density (VCD) quality flag = 0, and Terrain Reflectivity < 30%. Similar 

to the OMPS HCHO, we recalculate AMFs by using shape factors from the chemical transport 

model used in this study. We oversample the OMI granules using the Cressman interpolator with 

a 0.25o radius of influence. 135 

Model simulation 

To be able to simulate the atmospheric composition, and to perform an analytical inverse 

modeling, we set up a 27-km grid resolution regional chemical transport model using the 

Community Multiscale Air Quality Modeling System (CMAQ) model [Byun and Schere, 2006] 

that consists of 328×323 grids covering China, Japan, South Korea, Taiwan and some portions of 140 

Russia, India and South Asia (Figure 1). The time period covered by the simulation is from April 

to June 2016. We use the month of April for spin-up. The anthropogenic emissions are based on 

the monthly MIX-Asia 2010 inventory [Li et al., 2015] in the CB05 mechanism. The 

anthropogenic emissions are mainly grouped into three different sectors, namely mobile, point, 

and residential (area) sources. We apply a diurnal scale to the mobile sectors used in the national 145 

emission inventory (NEI)-2011 emission platform to represent the first-order approximation of 

traffic patterns. We include biomass burning emissions from the Fire Inventory from NCAR 

(FINN) v1.6 inventory [Wiedinmyer et al., 2011], and consider the plume rise parametrization 

used in the GEOS-Chem model (i.e., 60% of emissions are distributed uniformly in the planetary 

boundary layer (PBL)). We use the offline Model of Emissions of Gases and Aerosols from Nature 150 
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(MEGAN) v2.1 model [Guenther et al., 2006] following the high resolution inputs described in 

Souri et al. [2017]. The diurnally lateral chemical conditions are simulated by GEOS-Chem v10 

[Bey et al., 2001] using the full chemistry mechanism (NOx-Ox-HC-Aer-Br) spun up for a year. 

With regard to weather modeling, we use the Weather Research and Forecasting model (WRF) 

v3.9.1 [Skamarock et al., 2008] at the same resolution to that of the CMAQ (~27km), but with a 155 

wider grid (342×337), and 28 vertical pressure sigma levels. The lateral boundary conditions and 

the grid nudging inputs are from the global Final (FNL) 0.25o resolution model. The major 

configurations for the WRF-CMAQ model are summarized in Table 1 and Table 2. 

Inverse modeling 

We attempt to improve our high-dimensional imperfect numerical representation of 160 

atmospheric compounds using the well-characterized NO2 and HCHO columns from satellites. We 

use an analytical inversion using the WRF-CMAQ model to constrain the relevant bottom-up 

emission estimation [Souri et al., 2016; Souri et al., 2017; Souri et al., 2018]. The inversion seeks 

to solve the following cost function under the assumptions that i) both observation and emission 

error covariances follow Gaussian probability density functions with a zero bias, ii) the observation 165 

and emission error covariances are independent and iii) the relationship between observations and 

emissions is not grossly non-linear: 

𝐽(𝐱) =
1
2
(𝐲 − 𝐹(𝐱))+𝐒-./(𝐲 − 𝐹(𝐱)) +

1
2
(𝐱 − 𝐱1)+𝐒2./(𝐱 − 𝐱1) 

 

(1) 

where x is the inversion estimate (a posteriori) given two sources of data: a priori (xa) and 

observation (y). So and Se are the error covariance matrices of observation (instrument) and 

emission. F is the forward model (here WRF-CMAQ) to project the emissions onto columns. The 170 

first term of Eq.1 attempts to reduce the distance between observations and the simulated columns. 

The second term incorporates some prior understanding and expectation of the true state of the 

emissions, that is, it does not allow the a posteriori to deviate largely from the a priori, even though 

the observations could be far from our estimation. The weight of each term is dictated by its 

covariance matrix. If Se is large compared to So, the a posteriori will be independent of the prior 175 

knowledge and, conversely, if So dominates, the final solution will consist mostly of the a priori. 

Following the Gauss-Newton method described in Rodger [2000], we derive iteratively 

(i.e., i is the index of iteration) the posterior emissions by: 

𝐱𝒊4𝟏 = 𝐱1 + 𝐆[𝐲 − 𝐹(𝐱𝒊) − 𝐾𝑖(𝐱𝒊 − 𝐱1)] (2) 
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where G is the Kalman gain, 

𝐆 = 𝐒2 𝐾;+<𝐾;𝐒2 𝐾;+ + 𝐒- =
./

 (3) 

and 𝐾; (= 𝐾(𝐱𝒊)) is the Jacobian matrix calculated explicitly from the model (discussed later). The 180 

covariance matrix of the a posteriori is calculated by: 

𝐒>2 = (𝐈 − 𝐆𝐾@+)𝐒2  (4) 

where 𝐾@ is the Jacobian from the ith iteration. Here we iterate Eq.2 three times. The averaging 

kernels (A) are given by: 

𝐀 = 𝐈 − 𝐒>2𝐒2./ (5) 

The inversion system is complicated by the commonly overlooked fact that observations 

are biased. For instance, Souri et al. [2018] found that airborne remote sensing observations were 185 

high relative to surface Pandora measurements. The overestimation of the VCDs was problematic, 

since it could have been propagated in the inversion, inducing a bias in the top-down estimation. 

The authors partly mitigated it by constraining the MODIS albedo which was assumed to be 

responsible for the bias. Attempts to reduce the bias resulting from coarse profiles from a global 

model in calculating gas shape profiles were made by recalculating the shape factors using those 190 

from higher spatial resolution regional models in other studies [e.g., Souri et al., 2017; Laughner 

et al., 2018]. For this study, we use abundant observations from the KORUS-AQ campaign and 

follow the intercomparison platform proposed by Zhu et al. [2016; 2020] using aircraft 

observations collected during the campaign to be able to mitigate the biases in HCHO columns. 

Based on the corrected global model as a benchmark, we scale up all OMPS HCHO columns by 195 

20%. To mitigate the potential biases in OMI NO2, we followed exclusively the values reported 

over the KORUS-AQ period in Choi et al. [2019]. We increase the NO2 concentration uniformly 

by 33.9% (see table A3 in the paper). 

We calculate the covariance matrix of observations using the column uncertainty variable 

provided in the satellite datasets and consider them as random errors. Therefore, these values are 200 

significantly lowered down by oversampling the data over the course of two months. In addition 

to that, we take into account a fixed error for all pixels due to variability that exists in the applied 

bias correction. This error is based on the RMSE obtained from the mentioned studies used for 

removing biases. 
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To increase the degree of freedom for the optimization, we combine all sector emissions 205 

including anthropogenic, biomass burning and biogenic emissions for NOx and VOCs.  Therefore, 

we use the following formula to estimate the covariance of the a priori: 

s+-B1CD = 𝑓FGBHI-D × sFGBHI-
D + 𝑓KKD × sKK

D + 𝑓K;-D × sK;-
D  (6) 

where f denotes the fraction of the emission sector with respect to the total emissions, and s is the 

standard deviation of each sector category which is calculated from the average of each sector to 

a relative error listed in Table 3. 210 

For the same purpose (enhancing the amount of information gained from satellite 

observation) and to increase computational speed, we reduce the dimension of the state vectors 

(emissions) by aggregating them. However, grouping emissions into certain zones could also 

introduce another type of uncertainty, known as the aggregation error. We choose optimally 

aggregated zones by running the inversion multiple times, each with a certain selection of state 215 

vectors [Turner and Jacob, 2015]. As in our previous study in Souri et al. [2018], we use the 

Gaussian Model Mixture (GMM) method to cluster emissions into certain zones that share roughly 

similar features and investigate which combinations will lead to a minimum of the sum of 

aggregation and smoothing errors. 

In order to create the K matrix, one must estimate the impact of changes in emissions for 220 

each of the aggregated zones to the concentrations of a target compound which is calculated using 

CMAQ-Direct Decoupled Method (DDM) [Dunker et al., 1989; Cohan et al., 2005]. For instance, 

the first row and column of K denoting the response of the first grid cell to a zonal emission can 

be obtained by: 

𝐾(/,/) =
𝑆(/,/)NOD

𝐸𝑁𝑂S	
+-B1C,U-G2 (7) 

where 𝑆(/,/)NOD  is the sensitivity result in units of molecule cm-2 for the first grid indicating how 225 

concentration of NO2 column will change at the first row and column of the domain by changing 

one unit of emission of total NOx emissions. We do not consider the interconnection between the 

zonal emissions and concentrations due to computational burdens. The same concept will be 

applied to HCHO and VOC emissions. The advantage of using CMAQ-DDM to estimate the 

sensitivity lies in the fact that it calculates the local gradient which better represents the non-linear 230 

relationship existing between the emissions and the columns [Souri et al., 2017; Souri et al., 2018], 

which in turn, reduces the number of iterations. 
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Validation of the model in terms of meteorology 

It is essential to first evaluate some key meteorological variables, because large errors in 

the weather can complicate the inversion [e.g., Liu et al. 2017]. In order to validate the performance 235 

of the WRF model in terms of a number of meteorological variables including surface temperature, 

relative humidity, and winds, we use more than 1100 surface measurements from integrated 

surface database (ISD) stations (https://www.ncdc.noaa.gov/isd) over the domain in May-June 

2016. Table 4 lists the comparison of the model and the observations for the mentioned variables. 

Our model demonstrates a very low bias (0.6oC) with regard to surface temperature. We find a 240 

reasonable correspondence in terms of relative humidity indicating a fair water vapor budget in 

the model. The largest discrepancy between the model and observations in terms of temperature 

and humidity occurs in those grid cells that are in the proximity of the boundary conditions (not 

shown). Concerning the wind components, the deviation of the model from the observations is 

smaller than results obtained in a relatively flat area like Houston in Souri et al. [2016]. 245 

Comparison of the model and the satellite observations 

Prior to updating the emissions, we find it necessary to shed light on the spatial distribution 

of tropospheric NO2 and HCHO total columns from both observations and model, and their 

potential differences relative to their key precursors emissions. 

NO2 250 

The first row in Figure 2 illustrates tropospheric NO2 columns from the regional model, 

OMI (using adjusted AMF and bias corrected), and the logarithmic ratio of both quantities in May-

June 2016 at ~1330 LST over Asia. The second row depicts daily-mean values of dominant sources 

of NOx, namely as, biogenic, anthropogenic, and biomass burning emissions (that are subject to 

change after the inversion). A high degree of correlation between the anthropogenic NOx emissions 255 

and NO2 columns implies the predominant production of NO2 from the anthropogenic sources 

[Logan, 1983]. We find a reasonable two-dimensional Pearson correlation (r=0.73) between the 

modeled and the observed columns. Generally, the WRF-CMAQ largely underestimated (56%) 

tropospheric NO2 columns with respect to those of OMI over the entire domain. Segregating 

intuitively the domain into high emission areas (NOx > 10 ton/day) and low ones (NOx < 10 260 

ton/day) allows for a better understanding of the discrepancy between the model and the 

observations. In the high NOx areas, the model tends to overestimate tropospheric NO2 columns 

by 73%, whereas for the low NOx regions, the model shows a substantial underestimation by 68%. 
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Such a conflicting bias is confirmed by the contour map of the logarithm ratio of the model to OMI 

in Figure 2. The large overestimation of the model in terms of NO2 over the polluted areas is 265 

explained by stringent regulations enacted in various countries in Asia; for instance, Chinese 

regulatory agencies have taken aggressive actions recently to cut anthropogenic NOx emissions by 

implementing selective catalytic reduction in power plants, closing a number of coal power plants, 

and policies on transportation [Zhang et al., 2012, Liu et al., 2016]. The highest positive bias in 

the model is observed over Shanxi Province in China, home to coal production, underscoring the 270 

effectiveness of the emission standards at controlling air pollution. Likewise, we observe a positive 

bias in the model over major cities in Japan and South Korea; but the magnitude of the reduction 

over these cities is substantially smaller than what we observe in China. In particular, Irie et al. 

[2016] and Souri et al. [2017] found a hiatus in the NOx reduction over Japan and South Korea 

during the 2010-2014 period mainly due to rapid increases in the number of diesel cars in South 275 

Korea, and thermal power plants built as a substitution for the Fukushima nuclear plant in Japan.  

The underestimation of the model in the low NOx regions is related to a number of factors 

such as i) the widely-reported underestimation of soil (biogenic) NOx emissions due to the lack of 

precise knowledge of fertilizers use, soil biota, or canopy interactions [Jaeglé, et al., 2005; Hudman 

et al., 2010; Souri et al., 2016], ii) the underestimation of the upper-troposphere NO2 due to non-280 

surface emissions (aviation/lightning) or errors in the vertical mixing or moist convection [e.g., 

Souri et al., 2018], and iii) a possible overprediction of the lifetime of organic nitrates diminishing 

background NO2 levels [Canty et al., 2015]. Addressing the second issue requires a very high 

resolution model with explicit resolving microphysics and large eddy simulations, and the last 

problem requires more experimental studies to improve organic nitrates chemistry [Romer Present 285 

et al., 2020]. In this study, we attempt to mitigate the discrepancy between the model and the 

satellite observations solely by adjusting the relevant emissions. Accordingly, future approaches 

improving models the physical/chemical processes can offset top-down emissions estimates 

inevitably. 

HCHO 290 

A comparison between HCHO columns from the model and OMPS along with the major 

sources of VOCs in May-June 2016 is depicted in Figure 3. A reasonable correlation (r=0.78) 

between the model and OMPS suggests a good confidence in the location of emissions. However, 

the magnitude of HCHO columns between the two datasets strongly disagrees, especially over the 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 11 

tropics where biogenic emissions are large. A myriad of studies have reported a largely positive 295 

bias (by a factor of 2-3) associated with isoprene emissions estimated by MEGAN using satellite 

measurements [e.g., Millet et al., 2008; Stavrakou et al., 2009; Marais et al., 2012; Bauwens et al., 

2016]. To compound, Stavrakou et al. [2011] found a large overestimation in methanol emissions 

from the same model that can further preclude the accurate estimation of the yield of HCHO. This 

is especially the case for the tropics. As a response to the overestimation of the biogenic VOCs by 300 

MEGAN, we observe a largely positive bias in the simulated HCHO columns ranging from 50% 

over the south of China to ~400% over Malaysia and Indonesia. As we move away from the hotspot 

of the biogenic emissions in lower latitudes, the positive bias of the model declines, ultimately 

turning into a negative bias at higher latitudes. OMPS HCHO columns suggest that the yield of 

HCHO over North China Plain (NCP) and Yangtze River Delta (YRD) is comparable to those over 305 

the tropics suggesting that the anthropogenic emissions over NCP are the dominant source of 

HCHO [Souri et al., 2017; Jin and Holloway, 2015]. We do not see a significant deviation in the 

model from the observations over this region indicating that no noticeable efforts on controlling 

VOC emissions in NCP and YRD have been made which is very likely due to the fact that the 

recent regulations over China have overlooked cutting emissions from several industrial sectors 310 

[Liu et al., 2016] prior to 2016 [Li et al. 2019]. This finding lines up with results reported by Souri 

et al. [2017] and Shen et al. [2019]. We observe both underestimated and overestimated values in 

the simulated HCHO columns over areas in South Korea and Japan. The underestimation of HCHO 

in the model over regions with low VOCs (such as Mongolia and Pacific Ocean) can be either due 

to missing sources or the incapability of CMAQ to account for moist convective transport. As 315 

shown here, it is necessary to adjust the emissions to better match the simulated columns with the 

satellites observations given their errors, and by doing so, there is a chance for a better simulation 

of the formation of tropospheric ozone. 

Updated Emissions 

In this section we report the results from the inverse modeling and the associated 320 

uncertainty associated with the top-down estimation; moreover, we wish to assess how much 

information is gained from utilizing satellite observations via the calculation of averaging kernels. 

Finally, observations are used to verify, to some extent, the accuracy of our top-down emission 

estimations. 

NOx 325 
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The first row in Figure 4 shows the a priori, the a posteriori, and their ratios in terms of the 

total NOx emissions in May-June 2016. We observe that the ratios are highly correlated with those 

of CMAQ/OMI shown in Figure 2, suggesting that the inversion attempts to reduce the distance 

between the model and the observations. Major reductions occur over China. We attribute them to 

strict emissions policies [Liu et al., 2016; Reuter et al., 2015; de Foy et al., 2016; Krotkov et al., 330 

2016; Souri et al., 2017]. The enhancements in NOx emissions are commonly found in rural areas, 

especially over grasslands located in the western/central China and Mongolia. The changes in NOx 

emissions over South Korea and Japan are positive [Irie et al., 2016; Souri et al., 2017]. This is 

especially the case for Japan for which we observe a larger enhancement in total NOx emissions 

(12%) essentially due to new thermal power-plants. The second row in Figure 4 depicts the relative 335 

errors in the a priori, the a posteriori, and AKs. Relative errors in the a priori are mostly confined 

to values close to 50% in polluted areas. They increase further, up to 100%, in areas experiencing 

relatively large contributions from biomass burning or biogenic (soil) emissions. Encouragingly, 

OMI tropospheric NO2 columns in conjunction with the solid mathematical inversion method 

[Rodger, 2000] greatly reduce the uncertainties associated with the emissions in polluted areas; we 340 

observe AKs close to 1 over major cities or industrial areas. We see the lowest values in AKs over 

rural areas due to weaker signal/noise ratios from the sensor. Therefore, it is desirable but very 

difficult to improve the model using the sensor in terms of NOx chemistry/emissions in remote 

areas, evident in the low values of AKs. Table 5 lists the magnitude of the total NOx emissions in 

several regions (refer to Figure 1) before and after carrying out the inversion. If we assume that 345 

the dominant source of NOx emissions is anthropogenic, the most successful countries at cutting 

emissions (before, after) are China (87.94±44.09 Gg/day, 68.00±15.94 Gg/day), Taiwan 

(1.26±0.57 Gg/day, 0.97±0.33 Gg/day), and Malaysia (2.89±2.77 Gg/day, 2.25±1.34 Gg/day). All 

three countries have successfully implemented plans to reduce anthropogenic emissions since 

2010-2011 [Zhang et al., 2012; Trappey el al., 2012; Chua and Oh, 2011]. The uncertainty 350 

associated with the top-down estimate improves considerably. The largest reduction in the 

uncertainty of the emissions is observed over China, a response to a strong signal from OMI. 

An interesting observation lies in the discrepancy between the ratio of OMI/CMAQ (Figure 

2) to that of the a posteriori to the a priori over the North China Plain, suggesting that using a bulk 

ratio [Martin et al., 2003] cannot fully account for possible chemical feedback. The ratio of 355 

OMI/CMAQ is consistently lower than changes in the emission. Two reasons contribute to this 
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effect: i) as NOx emissions decrease in NOx-saturated areas (i.e., the dominant sink of radicals is 

through NO2+OH), OH levels essentially increase resulting in a shorter lifetime in NO2; therefore 

to reduce NO2 concentrations, a substantial reduction in NOx (suggested by OMI/CMAQ) is 

unnecessary coinciding with results from the inverse modeling, ii) the CMAQ-DDM (Figure S1) 360 

suggests that NO2 columns decrease due to increasing VOC emissions over the region; 

accordingly, the cross-relationship between NO2 concentrations and VOC emissions which has 

been implicitly taken into consideration by iteratively optimizing the cost function partly adds to 

the discrepancy. It is because of the chemical feedback that recent studies have attempted to 

enhance the capability of inverse modeling by iteratively adjusting relevant emissions [e.g., 365 

Cooper et al., 2017; Li et al., 2019]. 

To assess the resulting changes in the tropospheric NO2 columns after the inversion, and 

to validate our results, we compare the simulated values using the a priori and the a posteriori with 

OMI in Figure 5. We observe 64% reduction in the tropospheric NO2 columns on average over 

NCP despite only 32% reduction in the total NOx emissions over the region, a result of the chemical 370 

feedback. The two-dimensional Pearson correlation between the simulation using the a posteriori 

and OMI increases from 73% (using the a priori) to 83%. Both datasets now are in a better 

agreement as far as the magnitude goes. However, we do not see a significant change in the 

background values in the new simulation compared to those of OMI. This is primarily because of 

the consideration of higher covariances over low-emitting areas that weighs up the inversion 375 

towards the prior values. 

To further validate the results, we compare the NO2 data from the NCAR’s four-channel 

chemiluminescence instrument onboard the DC-8 aircraft during the campaign (not shown). These 

data are not interfered by NOz family. The aircraft collected the data in the Korean Peninsula 

around 23 days in May-June 2016 covering various altitudes and hours (https://www-380 

air.larc.nasa.gov/cgi-bin/ArcView/korusaq, access date: December 2019). We observe an 

underestimation of NO2 at the near surface levels (<900 hPa) by 19% (DC8 = 4.50 ppbv, CMAQ 

= 3.67 ppbv). The updated emissions increase the near surface levels over the Korean Peninsula, 

which in turn, reduce the bias to 11% (CMAQ = 4.02 ppbv). 

VOC 385 

Figure 6 illustrates the total VOC emissions before and after the inversion along with their 

errors. Immediately apparent is the large reduction of VOC emissions in the tropics and subtropics 
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due to the overestimation of isoprene from MEGAN v2.1. In contrast, enhancements of the 

emissions are evident at higher latitudes. We observe that the dominantly anthropogenic VOC 

emissions over NCP increase (~25%) after the adjustment highlighting the minimal efforts made 390 

to reduce this particular source of emissions [Souri et al., 2017; Shen et al., 2019]. For instance, 

Stavrakou et al. [2017] reported ~6% increases in anthropogenic VOC emissions over China from 

2010 to 2014. Despite the presence of vegetation over Japan and South Korea, we do not see 

largely overestimated values in the emissions. Hence, the overestimation of isoprene emissions is 

more pronounced in the tropics possibly because of an overestimation in the emission factors used 395 

for specific plants. Nevertheless, a non-trivial oversight in models could be an insufficient 

representation of both HOx chemistry and dry deposition in forest canopies [Millet et al., 2008]; 

as a result, the net amount of HCHO  in the atmosphere over forest areas is higher than what should 

be if removal through either a chemical loss or a faster dry deposition is considered.  

Owning to the fact that we assume anthropogenic VOC emissions to be less uncertain 400 

relative to other sectors, the errors in the a priori are smaller in populated areas. We observe that 

OMPS HCHO columns are able to significantly reduce the uncertainty associated with the total 

VOC emissions over areas showing a strong HCHO signal (>1016 molec.cm-2). Over clean areas, 

it is the other way around; we see less confidence in our top-down estimate (AK<0.4) in areas such 

as Tibet and Mongolia. 405 

We then compare the simulated HCHO column using two different emission inventories 

with those of OMPS in Figure 7. We observe a substantial improvement both in the spatial 

structure and the magnitude of simulated HCHO columns using the a posteriori with respect to 

OMPS. The two-dimensional Pearson correlation increases from 0.78 to 0.91 after applying the 

adjustments to the emissions. In response to the increases in the total VOC emissions over the 410 

North China Plain, we observe ~11% enhancements in the simulated HCHO total columns. The 

updated emissions lead to a reduction in HCHO total columns as large as 70% in the tropics. 

Validation of the model in terms of VOCs is not a straightforward task because the 

chemical mechanism used for our model has lumped several VOC species such as terminal/internal 

olefin or paraffin, only a handful of which were measured during the campaign. Besides, the MIX-415 

Asia inventory estimates the anthropogenic emissions for a selected number of VOCs in the CB05 

mechanism. Here, we focus only on six compounds including isoprene, HCHO, ethene, ethane, 

acetaldehyde, and methanol whose emissions are adjusted (with the same factor) based on satellite 
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measurements. The comparison of the simulated values with the DC-8 measurements showed a 

noticeable mitigation in the discrepancy between two datasets at lower boundaries (<900 hPa) in 420 

terms of isoprene (Figure S2), ethane (Figure S3), ethene (Figure S4), and acetaldehyde (Figure 

S5). Surprisingly, we observe a large underestimation of methanol over the Korean Peninsula by 

a factor of ten (Figure S6). Same tendency was observed in other regions in Wells et al. [2014] 

(see Figure 8 in the paper). Our inversion obviously fails at mitigating the bias as there is not much 

direct information from the satellite observations on this compound. Wells et al. [2014] and Hu et 425 

al. [2011] demonstrated that methanol can be a secondary source of HCHO up to 10-20% in 

midlatitudes in warm seasons. We tend to underestimate HCHO concentrations (by 15%) in the 

lower atmosphere (<900 hPa) after using the a posteriori over the Korean Peninsula (Figure S7). 

Implications for surface ozone 

The results we have generated can be further exploited to elucidate changes in the ozone 430 

production rates P(O3) owing to have constrained both NOx and VOC emissions. We calculate 

P(O3) by subtracting the ozone loss driven by HOx (HO+HO2), reaction with several VOCs (i.e., 

alkenes and isoprene), the formation of HNO3, and O3 photolysis followed by the reaction of O(1D) 

with water vapor, from the ozone formation via removal of NO through HO2 or RO2: 

𝑃(𝑂W) = 𝑘YOZ4NO[𝐻𝑂D][𝑁𝑂] +\𝑘]OZ^4NO[ 𝑅𝑂D;][𝑁𝑂]

− 𝑘OY4NOZ4`[𝑂𝐻][𝑁𝑂D][𝑀] − 𝑘YOZ4Ob[𝐻𝑂D][𝑂W]

− 𝑘OY4Ob[𝑂𝐻][𝑂W] − 𝑘O< cd =4YZOe𝑂< 𝐷/ =g[𝐻D𝑂] − 𝐿(𝑂W + 𝑉𝑂𝐶𝑠) 

(8) 

Since P(O3) is a non-linear function of NOx and VOC emissions, it is advantageous to look at the 435 

ratio of chemical loss of NOx to that of ROx (RO2+HO2), a robust indicator to pinpointing 

underlying drivers for ROx cycle. LROx is defined through the sum of primarily radical-radical 

reactions: 

𝐿𝑅𝑂S = 𝑘YOZ4YOZ[𝐻𝑂D]
D +\𝑘]OZ^4YOZ[𝑅𝑂D;][𝐻𝑂D] +\𝑘]OZ^4]OZ^[𝑅𝑂D;]

D (9) 

LNOx mainly occurs via the NO2+OH reaction: 

𝐿𝑁𝑂S = 𝑘OY4NOZ4`[𝑂𝐻][𝑁𝑂D][𝑀] (10) 

Typically, a value of LNOx/LROx~2.7 defines the transition line between VOC-sensitive and 440 

NOx-sensitive regimes [Schroeder et al., 2017; Souri et al., 2020].  

Figure 8 depicts a contour map of LNOx/ROx ratios before and after the inversion. As 

expected, the larger ratios are confined within major cities or industrial areas due to abundant NOx 
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emissions. The hotspot of VOC-sensitive regimes is located in NCP and YRD. Also of interest in 

Figure 8 is that advection renders a major fraction of the Yellow Sea (the sea connecting China to 445 

Korea) VOC-sensitive. Using the a posteriori leads to precipitous changes in the chemical 

condition regimes. As a result of a large reduction in the isoprene emissions in both the tropics and 

subtropics, we observe a shift toward VOC-limited, though the values of LNOx/ROx are yet too 

far from the transition line (i.e., <<2.7). The substantial reduction in NOx emissions and an increase 

in VOC emissions over NCP and YRD go hand-in-hand transitioning towards NOx-sensitive 450 

regime. The ratios over South Korea and Japan are found to be variable and somehow in synch 

with the changes in NOx emissions. 

The resultant changes in the LNOx/LROx ratios shed some light on ozone sensitivity with 

respect to its major precursors, but P(O3) is also dependent on the absolute values of emissions, 

the degree of reactivity of VOCs, and the abundance of radicals. Here we use the integrated 455 

reaction rates (IRR) to determine the most influential reactions pertaining to ozone loss and 

production at the surface. We focus on 1200 to 1800 China standard time (CST) hours. Figure 9 

shows the differences in the major pathways for the loss and the formation of ozone at the surface 

within the time window. The differences are computed based on the subtraction of the simulation 

with the a posteriori from that with the a priori. In Figure 9 we see a strong degree of correlation 460 

between the changes in magnitude of P(O3) through HO2+NO reaction with those of NOx 

emissions (Figure 4), whereas the changes in magnitude of P(O3) via RO2+NO reaction primarily 

are par with those of VOC emissions (Figure 6). We observe P(O3) increases through HO2+NO 

and RO2+NO reactions in Japan, South Korea, Myanmar, and Philippines because of increases in 

NOx emissions in NOx-sensitive regions. The simultaneous decrease in NOx and VOC in PRD and 465 

Taiwan causes the production of ozone via the same pathways to reduce. 

Normally, in VOC-rich environments, reduction in VOC emissions boosts OH 

concentrations (Figure S8). Consequently, we observe an enhancement in NO2+OH reaction in the 

tropics and subtopics. A substantial reduction in the chemical loss of ozone through NO2+OH over 

NCP and YRD arises from a considerable decrease of NOx emissions and an increase in OH (due 470 

to chemical feedback of NOx). Because of increases in HOx concentrations over NCP (Figure S8-

S9), we also observe an enhancement in ozone loss through reacting with HOx. Changes in the 

ozone photolysis (O1D+H2O) are majorly dictated by photolysis and water vapor mixing ratios, 

both of which are roughly constant in both simulations; accordingly the difference of the reaction 
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rate is mainly reflecting those in ozone (shown later). Interestingly, we observe a large reduction 475 

in the loss of ozone through reaction with VOCs at lower latitudes. This is essentially because of 

the reduction in ISOP+O3, a VOC that prevails in those latitudes. Despite a much slower reaction 

rate for ISOP+O3 compared to ISOP+OH and ISOP+hv [Karl et al. 2004], this specific chemical 

pathway can be important as a way to oxidize isoprene and forming HOx in forests [Paulson and 

Orlando, 1996]. 480 

Figure 10 sums the differences of all mentioned chemical pathways involved in 

formation/loss of surface ozone at 1200-1600 CST. Because of a complex non-linear relationship 

between P(O3) and its precursors, we observe a variability in both the sign and amplitude of P(O3). 

On average, changes in  O3 production dominate over changes  in O3 sinks except in Malaysia 

which underwent a significant reduction in isoprene emissions, thus slowing down the ISOP+O3 485 

reaction. Following the patterns of NOx-limited and VOC-limited in Figure 8, it is possible to 

conclude that the P(O3) differences are mainly driven by those of NOx depending at which 

chemical condition the changes in emissions have occurred. 

Much of the above analysis is based on ozone production rates, however, various 

parameters encompassing dry deposition, vertical diffusion, and advection can also affect ozone 490 

concentrations. Therefore we further compute the difference between the simulated maximum 

daily 8-h average (MDA8) surface ozone levels before and after the inversion depicted in Figure 

11. We see a striking correlation between P(O3) (right panel in Figure 10) and MDA8 surface 

ozone indicating that the selected chemical pathways in this study can explain ozone changes. 

Nonetheless, the transport obviously plays a vital role in the spatial variability associated with the 495 

differences of surface ozone [e.g., Souri et al., 2016b]. Figure 11 suggests a significant 

enhancement of ozone over NCP (~4.56 ppbv, +5.6%) and YRD (5.2 ppbv, +6.8%) due to 

simultaneous decreases/increases in NOx/VOCs which is in agreement with Li et al. [2019]. On 

the other hand, reductions in NOx mitigate ozone pollution in PRD (-5.4%), Malaysia (-5.6%) and 

Taiwan (-11.6%). Table 6 lists the simulated MDA8 surface ozone levels for several regions before 500 

and after updating the emissions. Increases in MDA8 ozone over NCP and YRD overshadow 

decreases in southern China resulting in 1.1% enhancement for China. This provides strong 

evidence that regulations on cutting VOC emissions should not be ignored. The largest 

reduction/increase of MDA8 ozone is found over Taiwan/YRD.  

 505 
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Summary 

In this paper we have focused on providing a top-down constraint on both volatile organic 

compound (VOC) and nitrogen oxides (NOx) emissions using a combination of error-characterized 

Smithsonian Astrophysical Observatory (SAO) Ozone Mapping and Profile Suite Nadir Mapper 

(OMPS-NM) formaldehyde (HCHO) and National Aeronautics and Space Administration 510 

(NASA) Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) retrievals during the Korean 

and United States (KORUS) campaign over East Asia in May-June 2016. Here, we include 

biogenic, biomass burning and anthropogenic emissions from MEGAN, FINN, and MIX-Asia 

2010 inventory, respectively. A key point is that by considering together the satellite observations, 

we have been able to not only implicitly take the chemical feedback existing between HCHO-NOx 515 

and NO2-VOC into account through iteratively optimizing an analytical non-linear inversion, but 

also to quantify the impact of recent changes in emissions (since 2010) on surface ozone pollution. 

Concerning total NOx emissions, the inversion estimate suggests a substantial reduction 

over China (-23%), North China Plain (NCP) (-32%), Pearl River Delta (PRD) (-36%), Yangtze 

River Delta (YRD) (-41%), Taiwan (-23%), and Malaysia (-22%) with respect to the values 520 

reported in the prior emissions mostly dictated by the MIX-Asia 2010 inventory. In essence these 

values reflect recent actions to lower emissions in those countries [Zhang et al., 2012; Trappey el 

al., 2012; Chua and Oh, 2011]. The analytical inversion also paves the way for estimating the 

averaging kernels (AKs), thereby informing the amount of information acquired from satellites on 

the emissions estimation. We observe AKs>0.8 over major polluted areas indicating that OMI is 525 

able to improve the emission estimates over medium to high-emitting regions. Conversely, AKs 

are found to be small over pristine areas suggesting that little information can be gained from the 

satellite over rural areas given retrieval errors. In line with the studies of Irie et al. [2016] and Souri 

et al. [2017], we observe a growth in the total NOx emissions in Japan (12%) and South Korea 

(+9%) which are partially explained by construction of new thermal power plants in Japan, and an 530 

upward trend in the number of diesel vehicles in South Korea. 

MEGAN v2.1 estimates too much isoprene emissions in the tropics and subtropics, a 

picture that emerges from the latitudinal dependence of the posterior VOC emissions to the prior 

ones. It is readily apparent from the top-down constrained VOC emissions that the prevailing 

anthropogenic VOC emissions in NCP is underestimated by 25%, a direction that is in agreement 535 

with studies by Souri et al. [2017] and Shen et al. [2019]. We find out that OMPS HCHO columns 
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can greatly reduce the uncertainty associated with the total VOC emissions (AKs>0.8) over regions 

having a moderate-strong signal (>1016 molec.cm-2). 

A large spatial variability associated with both NOx and VOC results in great oscillation in 

chemical conditions regimes (i.e., NOx-sensitive or VOC-sensitive). Due to considerable 540 

reduction/increase in NOx/VOC emissions in NCP and YRD, we observe a large increase (53%) 

in the ratio of the chemical loss of NOx (LNOx) to the chemical loss of ROx (RO2+HO2) shifting 

the regions towards NOx-sensitive. As a result, a substantial reduction in afternoon NO2+OH 

reaction rate (a major loss of O3), and an increase in afternoon NO+HO2 and RO2+NO (a major 

production pathway for O3) are observed, leading to enhancements of the simulated maximum 545 

daily 8-hr average (MDA8) surface ozone concentrations by ~5 ppbv. Therefore, additional 

regulations on VOC emissions should be implemented to battle ozone pollution in those areas. On 

the other hand, being predominantly in NOx-sensitive regimes favors regions including Taiwan, 

Malaysia and PRD to benefit from reductions in NOx, resulting in noticeable decreases in 

simulated MDA8 surface ozone levels. 550 

It has taken many years to develop satellite-based gas retrievals, and weather and chemical 

transport models accurate enough to enable observationally-based estimates of emissions with 

reasonable confidence and quantified uncertainty, and produce credible top-down emission 

inventories over certain areas. However it is essential to improve certain aspects to be able to 

narrow the range of uncertainty associated with the estimation: i) getting the bias of the satellite 555 

gas retrievals about right for some areas (which requires a rigorous construction of representivity 

factor when it comes to comparing two datasets) would be insufficient because the bias can vary 

substantially over time and space depending on underlying surface properties and the atmospheric 

state, ii) there is a need for a proper quantification of the errors in the prior emissions based on the 

very raw information used in the emission inventory to discourage some arbitrarinesses, iii) the 560 

model parameter errors including those from PBL, radiation, and winds should be propagated to 

the final output [e.g., Rodger 2000], iv) due to intertwisted chemical feedback between various 

chemical compounds, inverse modeling needs to properly incorporate all available information 

(beyond HCHO and NO2) considering the cross-relationship either explicitly or implicitly. 

Acknowledgment 565 

We are thankful for the funding from NASA Aura Science Team (#NNX17AH47G), and NOAA 

AC4 program (#NA18OAR4310108). We acknowledge the publicly available WRF, CMAQ, 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 20 

GEOS-Chem models, and KORUS-AQ data that make this study possible. The simulations were 

run on the Smithsonian Institution High Performance Cluster (SI/HPC). 

Authors’ contributions 570 

A.H.S designed the research, analyzed the data, conducted the inverse modeling, CMAQ, GEOS-

Chem, WRF, and MEGAN, made all figures and wrote the manuscript. C.R.N, G.G, C.E.C.M, 

X.L. and K.C retrieved OMPS HCHO columns and conceived the study. L.Z. validated OMPS 

HCHO. D.R.B, A.F, and A.J.W measured different compounds during the campaign. J.W and Q.Z 

provided MIX-Asia inventory. All authors contributed to discussions and edited the manuscript. 575 

 

 

 

 

 580 

  

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 21 

 

References 

Bauwens, M., Stavrakou, T., Müller, J.-F., Smedt, I.D., Roozendael, M.V., Werf, G.R. van der, 
Wiedinmyer, C., Kaiser, J.W., Sindelarova, K., Guenther, A., 2016. Nine years of global 585 
hydrocarbon emissions based on source inversion of OMI formaldehyde observations. 
Atmospheric Chemistry and Physics 16, 10133–10158. https://doi.org/10.5194/acp-16-
10133-2016 

Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q., Liu, H.Y., 
Mickley, L.J., Schultz, M.G., 2001. Global modeling of tropospheric chemistry with 590 
assimilated meteorology: Model description and evaluation. Journal of Geophysical 
Research: Atmospheres 106, 23073–23095. https://doi.org/10.1029/2001JD000807 

Byun, D., Schere, K.L., 2006. Review of the Governing Equations, Computational Algorithms, 
and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) 
Modeling System. Appl. Mech. Rev 59, 51–77. https://doi.org/10.1115/1.2128636 595 

Canty, T.P., Hembeck, L., Vinciguerra, T.P., Anderson, D.C., Goldberg, D.L., Carpenter, S.F., 
Allen, D.J., Loughner, C.P., Salawitch, R.J., Dickerson, R.R., 2015. Ozone and NOx 
chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI) data. 
Atmospheric Chemistry and Physics 15, 10965–10982. https://doi.org/10.5194/acp-15-
10965-2015 600 

Chai, T., Carmichael, G.R., Tang, Y., Sandu, A., Heckel, A., Richter, A., Burrows, J.P., 2009. 
Regional NOx emission inversion through a four-dimensional variational approach using 
SCIAMACHY tropospheric NO2 column observations. Atmospheric Environment 43, 
5046–5055. https://doi.org/10.1016/j.atmosenv.2009.06.052 

Chance, K., 1998. Analysis of BrO measurements from the Global Ozone Monitoring 605 
Experiment. Geophysical Research Letters 25, 3335–3338. 
https://doi.org/10.1029/98GL52359 

Choi, S., Lamsal, L.N., Follette-Cook, M., Joiner, J., Krotkov, N.A., Swartz, W.H., Pickering, 
K.E., Loughner, C.P., Appel, W., Pfister, G., Saide, P.E., Cohen, R.C., Weinheimer, A.J., 
Herman, J.R., 2019. Assessment of NO2 observations during DISCOVER-AQ and 610 
KORUS-AQ field campaigns. Atmospheric Measurement Techniques Discussions 1–43. 
https://doi.org/10.5194/amt-2019-338 

Chua, S.C., Oh, T.H., 2011. Green progress and prospect in Malaysia. Renewable and 
Sustainable Energy Reviews 15, 2850–2861. https://doi.org/10.1016/j.rser.2011.03.008 

Cohan, D.S., Hakami, A., Hu, Y., Russell, A.G., 2005. Nonlinear Response of Ozone to 615 
Emissions:  Source Apportionment and Sensitivity Analysis. Environ. Sci. Technol. 39, 
6739–6748. https://doi.org/10.1021/es048664m 

Cooper, M., Martin, R.V., Padmanabhan, A., Henze, D.K., 2017. Comparing mass balance and 
adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen 
oxide emissions. Journal of Geophysical Research: Atmospheres 122, 4718–4734. 620 
https://doi.org/10.1002/2016JD025985 

Curci, G., Palmer, P.I., Kurosu, T.P., Chance, K., Visconti, G., 2010. Estimating European 
volatile organic compound emissions using satellite observations of formaldehyde from 
the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics 10, 11501–
11517. https://doi.org/10.5194/acp-10-11501-2010 625 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 22 

de Foy, B., Lu, Z., Streets, D.G., 2016. Satellite NO 2 retrievals suggest China has exceeded its 
NO x reduction goals from the twelfth Five-Year Plan. Scientific Reports 6, 1–9. 
https://doi.org/10.1038/srep35912 

Dunker, A.M., 1984. The decoupled direct method for calculating sensitivity coefficients in 
chemical kinetics. J. Chem. Phys. 81, 2385–2393. https://doi.org/10.1063/1.447938 630 

Flynn, L., Long, C., Wu, X., Evans, R., Beck, C.T., Petropavlovskikh, I., McConville, G., Yu, 
W., Zhang, Z., Niu, J., Beach, E., Hao, Y., Pan, C., Sen, B., Novicki, M., Zhou, S., 
Seftor, C., 2014. Performance of the Ozone Mapping and Profiler Suite (OMPS) 
products. Journal of Geophysical Research: Atmospheres 119, 6181–6195. 
https://doi.org/10.1002/2013JD020467 635 

González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T.P., Suleiman, R., 2015. Updated 
Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) 
formaldehyde retrieval. Atmospheric Measurement Techniques 8, 19–32. 
https://doi.org/10.5194/amt-8-19-2015 

González Abad, G., Vasilkov, A., Seftor, C., Liu, X., Chance, K., 2016. Smithsonian 640 
Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) 
formaldehyde retrieval. Atmospheric Measurement Techniques 9, 2797–2812. 
https://doi.org/10.5194/amt-9-2797-2016 

Gu, D., Wang, Y., Smeltzer, C., Liu, Z., 2013. Reduction in NOx Emission Trends over China: 
Regional and Seasonal Variations. Environ. Sci. Technol. 47, 12912–12919. 645 
https://doi.org/10.1021/es401727e 

Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, 
X., 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 
(MEGAN2.1): an extended and updated framework for modeling biogenic emissions. 
Geoscientific Model Development 5, 1471–1492. https://doi.org/10.5194/gmd-5-1471-650 
2012 

Hu, L., Millet, D.B., Mohr, M.J., Wells, K.C., Griffis, T.J., Helmig, D., 2011. Sources and 
seasonality of atmospheric methanol based on tall tower measurements in the US Upper 
Midwest. Atmospheric Chemistry and Physics 11, 11145–11156. 
https://doi.org/10.5194/acp-11-11145-2011 655 

Hudman, R.C., Russell, A.R., Valin, L.C., Cohen, R.C., 2010. Interannual variability in soil 
nitric oxide emissions over the United States as viewed from space. Atmospheric 
Chemistry and Physics 10, 9943–9952. https://doi.org/10.5194/acp-10-9943-2010 

Irie, H., Muto, T., Itahashi, S., Kurokawa, J., Uno, I., 2016a. Turnaround of Tropospheric 
Nitrogen Dioxide Pollution Trends in China, Japan, and South Korea. Sola 12, 170–174. 660 
https://doi.org/10.2151/sola.2016-035 

Jaeglé, L., Steinberger, L., Martin, R.V., Chance, K., 2005. Global partitioning of NOx sources 
using satellite observations: Relative roles of fossil fuel combustion, biomass burning and 
soil emissions. Faraday Discuss. 130, 407–423. https://doi.org/10.1039/B502128F 

Jin, X., Holloway, T., 2015. Spatial and temporal variability of ozone sensitivity over China 665 
observed from the Ozone Monitoring Instrument. Journal of Geophysical Research: 
Atmospheres 120, 7229–7246. https://doi.org/10.1002/2015JD023250 

Karl, M., Brauers, T., Dorn, H.-P., Holland, F., Komenda, M., Poppe, D., Rohrer, F., Rupp, L., 
Schaub, A., Wahner, A., 2004. Kinetic Study of the OH-isoprene and O3-isoprene 
reaction in the atmosphere simulation chamber, SAPHIR. Geophysical Research Letters 670 
31. https://doi.org/10.1029/2003GL019189 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 23 

Krotkov, N.A., McLinden, C.A., Li, C., Lamsal, L.N., Celarier, E.A., Marchenko, S.V., Swartz, 
W.H., Bucsela, E.J., Joiner, J., Duncan, B.N., Boersma, K.F., Veefkind, J.P., Levelt, P.F., 
Fioletov, V.E., Dickerson, R.R., He, H., Lu, Z., Streets, D.G., 2016. Aura OMI 
observations of regional SO2 and NO2 pollution changes from 2005 to 2015. 675 
Atmospheric Chemistry and Physics 16, 4605–4629. https://doi.org/10.5194/acp-16-
4605-2016 

Laughner, J.L., Zhu, Q., Cohen, R.C., 2018. The Berkeley High Resolution Tropospheric NO2 
product. Earth System Science Data 10, 2069–2095. https://doi.org/10.5194/essd-10-
2069-2018 680 

Levelt, P.F., Joiner, J., Tamminen, J., Veefkind, J.P., Bhartia, P.K., Stein Zweers, D.C., Duncan, 
B.N., Streets, D.G., Eskes, H., A, R. van der, McLinden, C., Fioletov, V., Carn, S., Laat, 
J. de, DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering, 
K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, 
K., Graaf, M. de, Hakkarainen, J., Hassinen, S., Ialongo, I., Kleipool, Q., Krotkov, N., Li, 685 
C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L.G., Torres, O., Wang, 
H., Wargan, K., 2018. The Ozone Monitoring Instrument: overview of 14 years in space. 
Atmospheric Chemistry and Physics 18, 5699–5745. https://doi.org/10.5194/acp-18-
5699-2018 

Li, C., Martin, R.V., Shephard, M.W., Cady-Pereira, K., Cooper, M.J., Kaiser, J., Lee, C.J., 690 
Zhang, L., Henze, D.K., 2019. Assessing the Iterative Finite Difference Mass Balance 
and 4D-Var Methods to Derive Ammonia Emissions Over North America Using 
Synthetic Observations. Journal of Geophysical Research: Atmospheres 124, 4222–4236. 
https://doi.org/10.1029/2018JD030183 

Li, K., Jacob, D.J., Liao, H., Shen, L., Zhang, Q., Bates, K.H., 2019. Anthropogenic drivers of 695 
2013–2017 trends in summer surface ozone in China. PNAS 116, 422–427. 
https://doi.org/10.1073/pnas.1812168116 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., 
Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., 
Zheng, B., 2017a. MIX: a mosaic Asian anthropogenic emission inventory under the 700 
international collaboration framework of the MICS-Asia and HTAP. Atmospheric 
Chemistry and Physics 17, 935–963. https://doi.org/10.5194/acp-17-935-2017 

Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Hong, C., Kang, S., Yan, L., Zhang, Y., 
Bo, Y., Su, H., Cheng, Y., He, K., 2019. Persistent growth of anthropogenic non-methane 
volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, 705 
speciation and ozone formation potential. Atmospheric Chemistry and Physics 19, 8897–
8913. https://doi.org/10.5194/acp-19-8897-2019 

Lin, M., Horowitz, L.W., Payton, R., Fiore, A.M., Tonnesen, G., 2017. US surface ozone trends 
and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, 
domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics 17, 2943–710 
2970. https://doi.org/10.5194/acp-17-2943-2017 

Liu, F., Zhang, Q., A, R.J. van der, Zheng, B., Tong, D., Yan, L., Zheng, Y., He, K., 2016. 
Recent reduction in NO x emissions over China: synthesis of satellite observations and 
emission inventories. Environ. Res. Lett. 11, 114002. https://doi.org/10.1088/1748-
9326/11/11/114002 715 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 24 

Liu, X., Mizzi, A.P., Anderson, J.L., Fung, I.Y., Cohen, R.C., 2017. Assimilation of satellite 
NO2 observations at high spatial resolution using OSSEs. Atmospheric Chemistry and 
Physics 17, 7067–7081. https://doi.org/10.5194/acp-17-7067-2017 

Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., Tang, D., 2008a. Source profiles of volatile organic 
compounds (VOCs) measured in China: Part I. Atmospheric Environment, PRIDE-PRD 720 
2004 Campaign : Program of Regional Integrated Experiments on Air Quality over Pearl 
River Delta of China 42, 6247–6260. https://doi.org/10.1016/j.atmosenv.2008.01.070 

Liu, Y., Shao, M., Lu, S., Chang, C.-C., Wang, J.-L., Fu, L., 2008b. Source apportionment of 
ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmospheric 
Environment, PRIDE-PRD 2004 Campaign : Program of Regional Integrated 725 
Experiments on Air Quality over Pearl River Delta of China 42, 6261–6274. 
https://doi.org/10.1016/j.atmosenv.2008.02.027 

Logan, J.A., 1983. Nitrogen oxides in the troposphere: Global and regional budgets. Journal of 
Geophysical Research: Oceans 88, 10785–10807. 
https://doi.org/10.1029/JC088iC15p10785 730 

Marais, E.A., Jacob, D.J., Kurosu, T.P., Chance, K., Murphy, J.G., Reeves, C., Mills, G., 
Casadio, S., Millet, D.B., Barkley, M.P., Paulot, F., Mao, J., 2012b. Isoprene emissions in 
Africa inferred from OMI observations of formaldehyde columns. Atmospheric 
Chemistry and Physics 12, 6219–6235. https://doi.org/10.5194/acp-12-6219-2012 

Martin, R.V., Jacob, D.J., Chance, K., Kurosu, T.P., Palmer, P.I., Evans, M.J., 2003. Global 735 
inventory of nitrogen oxide emissions constrained by space-based observations of NO2 
columns. Journal of Geophysical Research: Atmospheres 108. 
https://doi.org/10.1029/2003JD003453 

Millet, D.B., Jacob, D.J., Boersma, K.F., Fu, T.-M., Kurosu, T.P., Chance, K., Heald, C.L., 
Guenther, A., 2008b. Spatial distribution of isoprene emissions from North America 740 
derived from formaldehyde column measurements by the OMI satellite sensor. Journal of 
Geophysical Research: Atmospheres 113. https://doi.org/10.1029/2007JD008950 

Miyazaki, K., Eskes, H., Sudo, K., Boersma, K.F., Bowman, K., Kanaya, Y., 2017. Decadal 
changes in global surface NOx emissions from multi-constituent satellite data 
assimilation. Atmospheric Chemistry and Physics 17, 807–837. 745 
https://doi.org/10.5194/acp-17-807-2017 

Palmer, P.I., Jacob, D.J., Fiore, A.M., Martin, R.V., Chance, K., Kurosu, T.P., 2003. Mapping 
isoprene emissions over North America using formaldehyde column observations from 
space. Journal of Geophysical Research: Atmospheres 108. 
https://doi.org/10.1029/2002JD002153 750 

Paulson, S.E., Orlando, J.J., 1996. The reactions of ozone with alkenes: An important source of 
HOx in the boundary layer. Geophysical Research Letters 23, 3727–3730. 
https://doi.org/10.1029/96GL03477 

Reuter, M., Buchwitz, M., Hilboll, A., Richter, A., Schneising, O., Hilker, M., Heymann, J., 
Bovensmann, H., Burrows, J.P., 2014. Decreasing emissions of NO x relative to CO 2 in 755 
East Asia inferred from satellite observations. Nature Geoscience 7, 792–795. 
https://doi.org/10.1038/ngeo2257 

Rodgers, C.D., 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. 
WORLD SCIENTIFIC. https://doi.org/10.1142/3171 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 25 

Romer Present, P.S., Zare, A., Cohen, R.C., 2020. The changing role of organic nitrates in the 760 
removal and transport of NOx. Atmospheric Chemistry and Physics 20, 267–279. 
https://doi.org/10.5194/acp-20-267-2020 

Schroeder, J.R., Crawford, J.H., Fried, A., Walega, J., Weinheimer, A., Wisthaler, A., Müller, 
M., Mikoviny, T., Chen, G., Shook, M., Blake, D.R., Tonnesen, G.S., 2017. New insights 
into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity. 765 
Journal of Geophysical Research: Atmospheres 122, 8885–8907. 
https://doi.org/10.1002/2017JD026781 

Shen, L., Jacob, D.J., Zhu, L., Zhang, Q., Zheng, B., Sulprizio, M.P., Li, K., Smedt, I.D., Abad, 
G.G., Cao, H., Fu, T.-M., Liao, H., 2019. The 2005–2016 Trends of Formaldehyde 
Columns Over China Observed by Satellites: Increasing Anthropogenic Emissions of 770 
Volatile Organic Compounds and Decreasing Agricultural Fire Emissions. Geophysical 
Research Letters 46, 4468–4475. https://doi.org/10.1029/2019GL082172 

Shim, C., Wang, Y., Choi, Y., Palmer, P.I., Abbot, D.S., Chance, K., 2005. Constraining global 
isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde 
column measurements. Journal of Geophysical Research: Atmospheres 110. 775 
https://doi.org/10.1029/2004JD005629 

Skamarock, W.C., Klemp, J.B., 2008. A time-split nonhydrostatic atmospheric model for 
weather research and forecasting applications. Journal of Computational Physics, 
Predicting weather, climate and extreme events 227, 3465–3485. 
https://doi.org/10.1016/j.jcp.2007.01.037 780 

Souri, A.H., Choi, Y., Jeon, W., Li, X., Pan, S., Diao, L., Westenbarger, D.A., 2016a. 
Constraining NOx emissions using satellite NO2 measurements during 2013 
DISCOVER-AQ Texas campaign. Atmospheric Environment 131, 371–381. 
https://doi.org/10.1016/j.atmosenv.2016.02.020 

Souri, A.H., Choi, Y., Jeon, W., Woo, J.-H., Zhang, Q., Kurokawa, J., 2017. Remote sensing 785 
evidence of decadal changes in major tropospheric ozone precursors over East Asia. 
Journal of Geophysical Research: Atmospheres 122, 2474–2492. 
https://doi.org/10.1002/2016JD025663 

Souri, A.H., Choi, Y., Li, X., Kotsakis, A., Jiang, X., 2016b. A 15-year climatology of wind 
pattern impacts on surface ozone in Houston, Texas. Atmospheric Research 174–175, 790 
124–134. https://doi.org/10.1016/j.atmosres.2016.02.007 

Souri, A.H., Choi, Y., Pan, S., Curci, G., Nowlan, C.R., Janz, S.J., Kowalewski, M.G., Liu, J., 
Herman, J.R., Weinheimer, A.J., 2018. First Top-Down Estimates of Anthropogenic NOx 
Emissions Using High-Resolution Airborne Remote Sensing Observations. Journal of 
Geophysical Research: Atmospheres 123, 3269–3284. 795 
https://doi.org/10.1002/2017JD028009 

Souri, A.H., Nowlan, C.R., Wolfe, G.M., Lamsal, L.N., Chan Miller, C.E., Abad, G.G., Janz, 
S.J., Fried, A., Blake, D.R., Weinheimer, A.J., Diskin, G.S., Liu, X., Chance, K., 2020. 
Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its 
precursors using high resolution airborne remote sensing observations in a high ozone 800 
episode during the KORUS-AQ campaign. Atmospheric Environment 117341. 
https://doi.org/10.1016/j.atmosenv.2020.117341 

Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., 
Karagulian, F., Mazière, M.D., Vigouroux, C., Amelynck, C., Schoon, N., Laffineur, Q., 
Heinesch, B., Aubinet, M., Rinsland, C., Müller, J.-F., 2011. First space-based derivation 805 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 26 

of the global atmospheric methanol emission fluxes. Atmospheric Chemistry and Physics 
11, 4873–4898. https://doi.org/10.5194/acp-11-4873-2011 

Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., 2017. Sources and Long-Term Trends 
of Ozone Precursors to Asian Pollution, in: Bouarar, I., Wang, X., Brasseur, G.P. (Eds.), 
Air Pollution in Eastern Asia: An Integrated Perspective, ISSI Scientific Report Series. 810 
Springer International Publishing, Cham, pp. 167–189. https://doi.org/10.1007/978-3-
319-59489-7_8 

Stavrakou, T., Müller, J.-F., Smedt, I.D., Roozendael, M.V., Werf, G.R. van der, Giglio, L., 
Guenther, A., 2009. Global emissions of non-methane hydrocarbons deduced from 
SCIAMACHY formaldehyde columns through 2003–2006. Atmospheric Chemistry and 815 
Physics 9, 3663–3679. https://doi.org/10.5194/acp-9-3663-2009 

Trappey, A.J.C., Trappey, C., Hsiao, C.T., Ou, J.J.R., Li, S.J., Chen, K.W.P., 2012. An 
evaluation model for low carbon island policy: The case of Taiwan’s green transportation 
policy. Energy Policy 45, 510–515. https://doi.org/10.1016/j.enpol.2012.02.063 

Turner, A.J., Jacob, D.J., 2015. Balancing aggregation and smoothing errors in inverse models. 820 
Atmospheric Chemistry and Physics 15, 7039–7048. https://doi.org/10.5194/acp-15-
7039-2015 

Valin, L.C., Fiore, A.M., Chance, K., Abad, G.G., 2016. The role of OH production in 
interpreting the variability of CH2O columns in the southeast U.S. Journal of 
Geophysical Research: Atmospheres 121, 478–493. 825 
https://doi.org/10.1002/2015JD024012 

Wells, K.C., Millet, D.B., Cady-Pereira, K.E., Shephard, M.W., Henze, D.K., Bousserez, N., 
Apel, E.C., de Gouw, J., Warneke, C., Singh, H.B., 2014. Quantifying global terrestrial 
methanol emissions using observations from the TES satellite sensor. Atmospheric 
Chemistry and Physics 14, 2555–2570. https://doi.org/10.5194/acp-14-2555-2014 830 

Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., Soja, 
A.J., 2011. The Fire INventory from NCAR (FINN): a high resolution global model to 
estimate the emissions from open burning. Geoscientific Model Development 4, 625–
641. https://doi.org/10.5194/gmd-4-625-2011 

Wolfe, G.M., Kaiser, J., Hanisco, T.F., Keutsch, F.N., Gouw, J.A. de, Gilman, J.B., Graus, M., 835 
Hatch, C.D., Holloway, J., Horowitz, L.W., Lee, B.H., Lerner, B.M., Lopez-Hilifiker, F., 
Mao, J., Marvin, M.R., Peischl, J., Pollack, I.B., Roberts, J.M., Ryerson, T.B., Thornton, 
J.A., Veres, P.R., Warneke, C., 2016. Formaldehyde production from isoprene oxidation 
across NOx regimes. Atmospheric Chemistry and Physics 16, 2597–2610. 
https://doi.org/10.5194/acp-16-2597-2016 840 

Zhang, Q., He, K., Huo, H., 2012. Cleaning China’s air. Nature 484, 161–162. 
https://doi.org/10.1038/484161a 

Zhong, L., Louie, P.K.K., Zheng, J., Yuan, Z., Yue, D., Ho, J.W.K., Lau, A.K.H., 2013. 
Science–policy interplay: Air quality management in the Pearl River Delta region and 
Hong Kong. Atmospheric Environment, Improving Regional Air Quality over the Pearl 845 
River Delta and Hong Kong: from Science to Policy 76, 3–10. 
https://doi.org/10.1016/j.atmosenv.2013.03.012 

Zhu, L., González Abad, G., Nowlan, C.R., Chan Miller, C., Chance, K., Apel, E.C., DiGangi, 
J.P., Fried, A., Hanisco, T.F., Hornbrook, R.S., Hu, L., Kaiser, J., Keutsch, F.N., Permar, 
W., Clair, J.M.S., Wolfe, G.M., 2020. Validation of satellite formaldehyde (HCHO) 850 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 27 

retrievals using observations from 12 aircraft campaigns. Atmospheric Chemistry and 
Physics Discussions 1–25. https://doi.org/10.5194/acp-2019-1117 

Zhu, L., Jacob, D.J., Kim, P.S., Fisher, J.A., Yu, K., Travis, K.R., Mickley, L.J., Yantosca, R.M., 
Sulprizio, M.P., Smedt, I.D., González Abad, G., Chance, K., Li, C., Ferrare, R., Fried, 
A., Hair, J.W., Hanisco, T.F., Richter, D., Jo Scarino, A., Walega, J., Weibring, P., 855 
Wolfe, G.M., 2016. Observing atmospheric formaldehyde (HCHO) from space: 
validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, 
GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US. 
Atmospheric Chemistry and Physics 16, 13477–13490. https://doi.org/10.5194/acp-16-
13477-2016  860 

https://doi.org/10.5194/acp-2020-220
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



 28 

 

Table 1. CMAQ major configurations 

CMAQ version V5.1 
Chemical Mechanism CB05 with chlorine chemistry 
Lightning NOx emission Included using inline code 
Photolysis Inline including aerosol impacts 
Horizontal advection YAMO (hyamo) 
Vertical advection WRF omega formula (vwrf) 
Horizontal mixing/diffusion Multiscale (multiscale) 
Vertical mixing/diffusion Asymmetric Convective Model version 2 (acm2) 
Aerosol AERO 6 for sea salt and thermodynamics (aero6) 
IC/BC source GEOS-Chem v10 

 
Table 2. WRF physics options 

WRF Version V3.9.1 
Microphysics WSM-6 
Long-wave Radiation RRTMG 
Short-wave Radiation RRTMG 
Surface Layer Option Monin-Obukhov 
Land-Surface Option Noah LSM  
Boundary Layer  ACM2 
Cumulus Cloud 
Option Kain-Fritsch 

IC/BC FNL 0.25o 
 865 
Table 3. The uncertainty assumptions used for estimating the covariance matrix of the a priori.  

 Anthropogenic Biogenic Biomass Burning 

NOx 50% 200% 100% 

VOC 150% 200% 300% 

 

Table 4. Statistics of surface temperature, relative humidity, and wind. Corr – Correlation;; 
RMSE – Root Mean Square Error; MAE – Mean Absolute Error; MB – Mean Bias; O – 
Observation; M - Model; O_M – Observed Mean; M_M – Model Mean; SD – Standard 870 
Deviation; Units for RMSE/MAE/MB/O_M/M_M/O_SD/M_SD:  oC for temperature, 
percentage for relative humidity, and m s-1 for wind. 

Variable Corr RMSE MAE MB O_M M_M O_SD M_SD 
Temperature 0.74 7.0 2.8 0.6 22.2 22.8 9.5 8.7 

Relative 
Humidity 0.76 12.1 9.5 -1.1 67.8 66.6 14.3 18.6 

U Wind 0.58 1.3 0.7 0.1 0.1 0.2 1.2 1.4 
V Wind 0.49 1.6 0.7 0.3 0.2 0.5 1.6 1.2 
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Table 5. NOx emissions before and after carrying out the inversion using OMI/OMPS for different 875 
countries in May-June 2016. 

Countries The a priori 
(Gg/day) 

The a posteriori 
(Gg/day) 

Changes in 
magnitudes 

Changes in 
errors 

China 87.94±44.091 68.00±15.942 -23% -63% 
North China Plain 27.96±13.49 19.05±2.50 -32% -81% 
Pearl River Delta 4.23±1.78 2.70±0.32 -36% -84% 
Yangtze River Delta 9.84±4.68 5.77±0.51 -41% -89% 
Thailand 4.38±3.24 4.20±2.28 -4% -29% 
Japan 3.53±1.71 3.96±1.04 +12% -39% 
Malaysia 2.89±2.77 2.25±1.34 -22% -49% 
Vietnam 2.87±2.04 2.79±1.57 -3% -23% 
South Korea 2.71±1.34 2.95±0.58 +9% -56% 
Bangladesh 1.72±1.06 2.10±0.87 +22% -18% 
Philippines 1.30±1.10 1.54±0.98 +18% -11% 
Taiwan 1.26±0.57 0.97±0.33 -23% -42% 
Cambodia 0.54±0.50 0.57±0.45 +5% -11% 
Mongolia 0.19±0.13 0.28±0.12 +44% -8% 

1- The errors in the a priori are estimated from equation 6. 
2- The errors in the a posteriori are calculated by equation 4. 
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Table 6. MDA8 surface ozone levels before and after carrying out the inversion for different 880 
regions in May-June 2016. 

Regions The a priori 
(ppbv) 

The a posteriori 
(ppbv) 

Changes in 
magnitudes 

China 56.10±16.34 56.72±16.71 +1.1% 
North China Plain 81.15±9.57 85.71±10.39 +5.6% 
Pearl River Delta 65.94±9.39 62.37±8.93 -5.4% 
Yangtze River Delta 76.79±5.90 82.04±5.21 +6.8% 
Thailand 50.86±8.84 48.85±7.94 -3.9% 
Japan 64.29±7.98 65.52±7.78 +1.9% 
Malaysia 46.87±21.87 44.22±12.90 -5.6% 
Vietnam 49.90±9.20 48.88±8.65 -2.0% 
South Korea 84.23±3.57 84.90±3.69 +0.8% 
Bangladesh 65.79±12.08 65.21±12.20 -0.9% 
Philippines 27.92±9.11 28.69±7.92 +2.8% 
Taiwan 61.55±10.88 54.38±8.00 -11.6% 
Cambodia 39.87±3.62 40.20±3.46 +0.8% 
Mongolia 40.11±2.52 40.16±2.40 +0.1% 
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Figures: 

 
Figure 1. The CMAQ 27-km domain covering the major proportion of Asia. The background 

picture is retrieved from publicly available NASA’s blue marble (© NASA). 890 
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Figure 2. (first row), tropospheric NO2 columns from the WRF-CMAQ model, OMI (using 

adjusted AMFs based on the shape factors derived from the model and bias corrected following 895 

Choi et al. [2019]), and the logarithmic ratio of CMAQ/OMI during May-June 2016 at ~1330 LST. 

(second row) The major sources of NOx emissions in the region including biogenic (soil) emissions 

simulated by MEGAN, anthropogenic emissions estimated by MIX Asia (2010), and biomass 

burning emissions made by FINN. The emissions are the daily-mean values based on the emissions 

in May-June. 900 
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Figure 3. (first row), HCHO total columns from the WRF-CMAQ model, OMPS (using adjusted  

AMFs based on the shape factors derived from the model and bias corrected following the method 

proposed in Zhu et al. [2020]), and the logarithmic ratio of CMAQ/OMPS during May-June 2016 

at ~1330 LST. (second row) The major sources of VOC emissions in the area including biogenic 905 

emissions simulated by MEGAN, anthropogenic emissions estimated by MIX Asia (2010), and 

biomass burning emissions made by FINN. The emissions are the daily-mean values based on the 

emissions in May-June. The VOC emissions only add up those compounds that are included in the 

CB05 mechanism. 

  910 
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Figure 4. (first row), total NOx emissions (i.e., the a priori), constrained by the satellite observations 

(i.e., the a posteriori) in May-June 2016, and the ratio of the a posteriori to the a priori. (second row) 

the errors in the a priori based on Table 3, the errors in the top-down estimation, and the averaging 

kernels (AKs) obtained from the estimation. 915 
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Figure 5. (from left to right), tropospheric NO2 columns from OMI, WRF-CMAQ simulated with 

the  prior emissions, and the same model but with the top-down emissions constrained by 920 

OMI/OMPS in May-June 2016.  
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Figure 6. (first row), total VOC emissions (i.e., the a priori), constrained by the satellite 

observations (i.e., the a posteriori) in May-June 2016, and the ratio of the a posteriori to the a priori. 

(second row) the errors in the a priori based on Table 3, the errors in the top-down estimation, and 925 

the averaging kernels (AKs) obtained from the estimation. 
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Figure 7. (from left to right), HCHO total columns from OMPS, the WRF-CMAQ simulated with 

the prior  emissions, and the same model but with the top-down emissions constrained by the 930 

satellite in May-June 2016. 

 

 

 
Figure 8. (from left to right), ratio of LNOx/LROx simulated by the prior and the posterior emissions, 935 

and their differences at 1200-1800 CST, averaged over May-June 2016. 
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Figure 9. Differences between the simulations with the updated emissions and the default ones of 

six major pathways of ozone production/loss. The time period is May-June 2016, 1200-1800 CST. 940 

 

 
Figure 10. Changes in the major chemical pathways of ozone production/loss, and the net of ozone 

production P(O3) after updating the emissions. The time period is May-June 2016, 1200-1800 

CST. 945 
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Figure 11. Simulated MDA8 surface ozone using the updated emissions constrained by OMI/OMPS 

observations (left), the default ones (middle), and their difference (right) in May-June 2016. 950 
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